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The introduction of combinatorial methods into materials discovery and optimization
presents new challenges for experiment planning. The need for new or adapted
experimental design approaches in combinatorial materials discovery stems from the
dramatic expansion in numbers of materials and experimental variables that can be
considered using combinatorial approaches. This paper presents an overview of some of
the experimental design strategies being developed and used for combinatorial discovery
and characterization of materials. Parallels between materials versus drug discovery are
drawn and various modes of combinatorial experimentation are outlined: mapping,
screening and optimization. Specific methods for incorporation of prior knowledge into
experimental design include statistical design of experiments, diversity techniques,
hierarchical and hybrid approaches such as neural networks, and search techniques like
Monte Carlo optimization and genetic algorithms. C© 2003 Kluwer Academic Publishers

1. Introduction
Combinatorial methods have been successfully applied
in the pharmaceutical industry to the discovery of small
organic molecules, peptides, and proteins. These meth-
ods are now being applied to a wide variety of materials
discovery and optimization applications [1–3], includ-
ing polymers, coatings and biomaterials [4–9], hetero-
geneous catalysts [10–12] and homogeneous catalysts
[13, 14].

The U.S. National Institute of Standards and Tech-
nology (NIST) held a workshop in July of 2001
to develop a technology roadmap for combinatorial
methods [15]. The workshop was part of the broader
chemical industry Vision 2020 process [16] and ad-
dressed the discovery of new materials and processes,
among other applications. The Combinatorial Meth-
ods workshop brought together representatives from
industries, government labs and universities to iden-
tify key needs and challenges in combinatorial meth-
ods; experimental design was one of the informat-
ics needs highlighted in the resulting technology road
map.

The introduction of combinatorial methods into drug
and material discovery presents new challenges for ex-
periment planning. The need for new or adapted exper-
imental design approaches in combinatorial materials
discovery stems from the dramatic expansion in num-
bers of materials and experimental variables that can be
considered using combinatorial approaches. The space
of possibilities for new small molecule drugs is enor-
mous; conservative estimates suggest that there may be
1040 candidate drugs [17] based on simple constraints
such molecular size and constituent elements. The do-
main of potential materials is even larger, with an ef-
fectively infinite number of candidates even for a single
material such as a polymeric coating or heterogeneous

catalyst, given a continuum of composition and process
variables to consider.

Table I outlines some of the parallels between com-
binatorial discovery of new drugs and new materials.
While the goal of combinatorial drug discovery is pri-
marily to discover or optimize a new molecular entity,
combinatorial materials discovery entails discovery and
optimization of either a new molecule or composition,
frequently associated with a set of process conditions
for both synthesis and application. This extension to
process parameters, and the broad range of composition
and structural variables within some material classes,
greatly extends the dimensionality of the experiment
space to be considered in materials discovery. Both drug
and materials discovery must take into account the pos-
sibility of highly nonlinear effects, in which properties
may change rapidly or discontinuously as a result of
small changes in composition, structure or conditions.
Nevertheless, many approaches to the design of com-
binatorial libraries for pharmaceutical applications as-
sume that similarity of structure leads to similarity of
biological behavior [18]. For inorganic materials and
polymers, such assumptions break down in the pres-
ence of phase changes and other physical phenomena.

A variety of methods are being applied to the de-
sign of combinatorial experiments, including statistical
design of experiments, diversity methods and search
strategies. Each has its place and the selection of method
depends upon the goals of the experiment and the in-
tended use of the resulting data. This paper presents an
overview of some of the design strategies being devel-
oped and used for combinatorial discovery. Different
modes of combinatorial experimentation are outlined:
mapping, screening and optimization. In each mode,
prior knowledge can be used to reduce the experimen-
tal space and increase experimental effectiveness.
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T ABL E I Selected characteristics of combinatorial drug and materials discovery

Characteristics Drug discovery Materials discovery

Goals Discover or optimize discrete Discover or optimize discrete molecules
molecules or proteins or compositions and processes

Dimensionality of search Composition and structural variables Composition and structural variables
synthesis and process parameters

Highly non-linear effects Single substitutions or small Small changes in composition, structure
structural changes dramatically alter or treatment can dramatically alter
biological effects material properties

Measurements Imprecise and potentially noisy Complex and potentially noisy

2. Background
2.1. Combinatorial experiment cycle
The combinatorial or high throughput materials dis-
covery process is frequently depicted as a cycle by
those practicing in both industry (cf. [9, 12, 19]) and in
academia (cf. [20]). An example is shown in Fig. 1. The
cycle represents an iterative discovery process, like that
developed for high throughput drug discovery [21]. In
this model, the cycle is initiated with the design of an
experiment, which may consist simply of sample com-
positions to be synthesized in a library, or may extend
further to treatment conditions and process parameters.
Samples are fabricated or synthesized in libraries based
on the experiment design and their properties of inter-
est are measured in the laboratory. After laboratory data
are analyzed and interpreted, qualitative or quantitative
models may be generated to provide insight and guid-
ance for the next set of experiments.

2.2. Modes of combinatorial
experimentation

There are commonalities among all combinatorial ex-
periments, including: the desire for high throughput,
achieved by parallel or rapid serial synthesis and test-
ing, and the systematic investigation of a wide range
of parameters in a single experiment. It is neverthe-
less useful to distinguish among types or modes of ex-
periments, classified by their primary objective. Three
modes of combinatorial experiments can be character-
ized as follows:

Experiment Planning

Higher
Throughput Larger

Scale

Figure 1 The combinatorial experiment cycle (after [37]).

• Mapping. In mapping experiments, the principal
goal is to develop quantitative or qualitative knowl-
edge of relationships among material or molecular
properties of interest and experimental parameters
such as composition, structure and synthesis condi-
tions. These relationships may be obtained without
necessarily searching for “hits” or lead compounds
or materials. The results of mapping studies can be
used as input to guide subsequent screening or op-
timization experiments.

• Screening. The purpose of screening experiments
is to identify hits (molecules or materials) for
follow-up testing. Screening may also be directed
at identifying small regions of materials space with
promising properties. While the goal of screening
differs from mapping, screening can be used to
accumulate knowledge of material properties over
time.

• Optimization. As the name implies, experiments
are designed to refine and optimize material or
molecular properties by carrying out intensive
studies in the vicinity of a lead compound or ma-
terial. Though similar in principal to mapping ex-
periments, the scope of optimization experiments
is dramatically reduced by varying a subset of pa-
rameters and/or by narrowing parameter ranges.

The terms screening and optimization stem from
the original application of combinatorial methods to
drug discovery. Analogous terms used in the materi-
als domain include primary and secondary screening,
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discovery and focus screening, or Stage 1 and Stage 2
testing. While screening and optimization are some-
times distinguished by throughput, this obscures the
differences in overall experimental objectives.

Mapping studies have received relatively little atten-
tion and are often subsumed under screening because
both address large search spaces. In drug discovery,
GlaxoSmithKline has used the term “progressible hit”
to designate hits whose mechanism of action is known
and which are accompanied by some limited structure-
activity information to guide optimization testing [17].
However, the value of combinatorial methods to sys-
tematically probe physical phenomena is becoming in-
creasingly recognized (cf. [6, 7, 12]).

3. Planning for combinatorial experiments
The cycle of combinatorial experiments and the large
experimental spaces introduce a different perspective
on the overall objectives of experiment planning or de-
sign. In classical statistical experiment design (DOE)
[22], the fundamental objective is hypothesis testing.
An experiment is designed to generate statistically re-
liable conclusions to specific questions. This strategy
is particularly suited to domains that are known suffi-
ciently well that appropriate questions can be formed.
In contrast, combinatorial methods are often employed
for the express purpose of exploring novel and un-
known domains. Here, the objective might better be
expressed as hypothesis generation. Combinatorial ex-
periments can be used to gather enough knowledge of
some region in experimental space to develop mean-
ingful and testable questions for future, more focused
experiments.

3.1. Objectives of combinatorial
experiment planning

The purpose of combinatorial experiment planning
is to direct a discovery process toward its particu-
lar objectives, whether in mapping, screening or opti-
mization modes. This purpose is achieved through the
design of individual experiments as well as through
the design of successive experiments in a series. The
planning must be done in a way that extracts the
maximum amount of information from each exper-
iment. Combinatorial experiment planning must in-
evitably balance two opposing forces: making use of
existing knowledge to maximize experimental effi-
ciency and preserving the opportunity for truly novel
discoveries.

The miniaturization and parallelization of materi-
als synthesis, novel library formation methods such
as composition spreads [7, 23], together with paral-
lel and/or high throughput analytical methods [24, 25]
are dramatically increasing the rate at which materials
can be created and tested. Nonetheless, experimental
capacity is still limited relative to the space of possi-
bilities by such factors as the cost of equipment and
other resources, the availability of investigators and
technicians, laboratory facilities for follow-up analy-
sis and testing, and allotted calendar time. Therefore,

effective experimental strategies are required to nav-
igate this vast experimental space, including alterna-
tives to statistical design of experiments for experiment
planning.

As outlined above, mapping, screening and opti-
mization experiments have different primary goals and
therefore different requirements in experiment plan-
ning. Because mapping experiments are intended to
discover trends and relationships, it is essential that
sampling strategies be consistent with the intended an-
alytical tools. These tools in turn must be able to handle
the discontinuities and nonlinearities that are likely to
arise in materials applications. Some nonlinear multi-
variate regression and pattern recognition methods are
proving effective for this purpose.

In screening experiments, the critical factor is the
ability to efficiently search a large parameter space and
confidently detect “hits” or active regions. However, the
additional need to build up knowledge of how material
properties behave within this space means that screen-
ing experiments should also, if possible, be designed
to support quantitative analysis of the dependence of
the measured response to experiment parameters. Fi-
nally, optimization studies require fine-grained sam-
pling of a local neighborhood around a specific material
or molecule. Within such neighborhoods, data analysis
and modeling may be simplified by the presumption of
local continuity.

3.2. Prior knowledge in combinatorial
experiments

Prior knowledge in many forms is available to guide
and constrain combinatorial experiments. At the most
basic level, the chemistry and physics of the domain
of interest impose limits on compositions and condi-
tions that can be explored. For example, solubility lim-
its, known phase transitions, monomer compatibilities
in polymers can all be used to reduce the experimental
space. At the other extreme, the realities of downstream
limits on processing or manufacturing conditions im-
pose very practical limits on what is realistically worth
exploring. Bem et al. [26] have also discussed the im-
portance of incorporating laboratory constraints into
experiment designs for efficiency.

Prior experiments, whether traditional or combina-
torial, provide another class of information that can
be exploited. Known analogues or exemplars may
provide starting points for new investigations. Pre-
dictions from functional relationships, such as quan-
titative structure-property relations (QSPR) or other
empirical data models, may be also be used to iden-
tify regions of interest and to identify important vari-
ables affecting desired properties. In the develop-
ment of such relationships and models, the material
property (or properties) of interest are modeled as
a function of descriptive molecular or material fea-
tures (descriptors), which form the independent vari-
ables. An important use of prior knowledge is in se-
lecting or designing the descriptors that go into such
models in order to capture as much relevant chem-
ical and physical information about the domain as
possible.
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4. Methods for combinatorial
experiment planning

Methods that are currently in use or under development
for combinatorial experiment planning fall into four
general classes:

• Traditional statistical DOE approaches such as fac-
torial or fractional factorial designs are intended to
generate statistically reliable conclusions from a
limited number of experiments.

• “Diversity” methods endeavor to represent or span
a space of interest using various measures to char-
acterize ensembles of experimental samples.

• “Search” methods attempt to intelligently navigate
through the experiment space in a succession of
experiments.

• Hierarchical or hybrid methods combine tech-
niques to develop a series of experiments with in-
creasing focus.

After a brief discussion of statistical DOE, this paper
will focus on diversity, search and hierarchical strate-
gies.

4.1. Statistical DOE
Recent reviews address the role of statistical DOE in
combinatorial materials discovery [27] and drug dis-
covery [28]. Statistical DOE methods build on a large
body of theoretical and practical work and are very
powerful tools in the right applications. Some of the
limitations of traditional DOE have been summarized
in Bem et al. [26]. Statistical DOE is motivated by a
need to generate statistically reliable conclusions from
a minimum number of experiments. As such, it provides
plans for systematic sampling and testing that will allow
quantitative assessment of the effects of selected inde-
pendent variables or factors on the dependent variable
of interest.

Because they are build on a large body of theoreti-
cal and practical research, sophisticated design methods
and corresponding data analysis methods have been de-
veloped. This leads to powerful tools for certain appli-
cations. In general, statistical methods are best suited
for problems with relatively small numbers of inde-
pendent variables and frequently make simplifying as-
sumptions about the domain, such as linearity or low-
order polynomial relationships. As a consequence, they
are perhaps most useful for combinatorial optimiza-
tion studies, where such assumptions may be locally
valid even if they do not hold over a broad range of
parameters.

4.2. Diversity methods
Diversity methods are used to sample an existing col-
lection of molecules or materials, or a pre-defined ex-
perimental space. Each method is intended to optimize
some property of an ensemble of samples, as opposed to
a property of any individual sample. All require a mea-
sure of similarity or distance within the experimental
space, based on molecular or material descriptors, or

experimental and/or process parameters. Prior knowl-
edge may be used to define the experimental space of
interest, to select appropriate descriptors, and to select
exemplars.

Extensive work has gone into the creation of de-
scriptors of small organic molecules, such as drug
candidates, monomers for polymer synthesis and ho-
mogeneous catalysts. These descriptors may represent
physical-chemical properties, composition, topologi-
cal indices or 2- and 3-dimensional structural features,
among others or may be derived from combinations of
other features (cf. [29]). Descriptors may also be based
on reagents and other inputs to synthesis or on synthe-
sis conditions themselves. Distance metrics or similar-
ity measures must be matched to the set of descriptors
or other representation of the experimental space. With
large numbers of descriptors, distance calculations be-
come very computationally intensive. Prior knowledge
can be used to select descriptors and distance metrics.
Rule- or knowledge-based filters may also be applied to
eliminate individual samples or regions from the design
(cf. [18]).

Two classes of diversity methods are discussed here:
grid- or cell-based methods and coverage methods, as
illustrated in Figs 2 through 4. These figures employ
a dramatically simplified experimental space, which
can be characterized by two descriptors, D1 and D2,
with individual samples depicted in the resulting two-
dimensional space. Fig. 2 illustrates the use of grid-
based methods for sampling from library of discrete
possibilities. The method is equally applicable to sam-
pling from a continuum of material candidates de-
scribed, for example, by composition variables. The
two- (or n-) dimensional space is divided into cells
based on descriptor values. The goal is to design an ex-
periment using samples that are most representative of
the resulting cells. The results of two variant strategies
are illustrated in cells where they would differ: (1) sam-
ples selected to be closest to the center of each cell (blue
circles); or (2) samples selected to represent the actual
distribution of points within the cell (circles). Grid-
based methods are useful in mapping and screening
experiments but the number of cells to be sampled can
become prohibitively large with large numbers of vari-
ables [27] unless sophisticated analyses are performed
to transform the space and reduce the dimensionality
[29].

Coverage designs identify sample sets that either:
(1) represent a set of existing exemplars; or (2) span
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Figure 2 Illustration of grid-based design methods.
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Figure 3 Illustration of coverage approach to represent a set of
examplars.
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Figure 4 Illustration of coverage approach to span an existing library.

an existing collection or designated experimental space
[18]. In Fig. 3, a set of exemplars is shown as crosses
while discrete potential candidates are shown as stars.
The exemplars may themselves be characterized by an
algorithm such as clustering, and then new materials
selected to represent each cluster, as indicated by the
circles. If the materials can be designed from a contin-
uum, then the cluster structure of the exemplars can be
more closely represented in the library.

Fig. 4 illustrates the coverage of the collection as a
whole or of the experimental space defined by a set of
examples or constraints [30]. Here the goal is to span the
space by maximizing inter-sample distances, with the
resulting points circled. An optimal coverage algorithm
has been applied to heterogeneous catalyst discovery as
part of a hierarchical strategy described in Section 4.4
[26].

Although Figs 2 through 4 are notional, they serve to
illustrate the differences in design characteristics that
result from these different objectives. Working with any
of these methods in high-dimensional spaces and with
large numbers of descriptors can be computationally
expensive for discrete entities (single molecules), but
approaches have been developed to optimize or reduce
the computations needed [18, 31, 32].

4.3. Search methods
Search approaches to experiment planning start with
a set of experiment points and specify an algorithmic
strategy for determining the next set of experiments
based on results from the preceding set. “Results” may
be obtained through a priori computational prediction,

from experiments, or from mathematical models de-
rived from experimental data. If the figure of merit can
be predicted computationally, then fitness can be eval-
uated in silico. In the materials domain, the complexity
of computing material properties means that the search
is conducted through a succession of experiments. Two
strategies that have been applied to materials discovery
are the genetic algorithm and Monte Carlo. An impor-
tant advantage of these methods is that they make no
assumptions about the domain—the response surface
may be arbitrarily complex without diminishing their
effectiveness. Prior knowledge may be used to select the
initial experiment points, or they may be selected at ran-
dom from within some space of possibilities. Knowl-
edge may also be exploited in defining the method to
derive one population from its predecessors.

The genetic algorithm is an optimization algorithm
inspired by the operation of natural selection on popu-
lations of organisms. An initial set of samples (popula-
tion) is selected, either at random or based on prior in-
formation. Each member of the population is described
by a set of attributes (analogous to genes) which may
be compositional or structural parameters, process and
treatment variables. The members of the population are
evaluated for their fitness, e.g., the figure of merit or ma-
terial property of interest. Members with high fitness
values are selected for reproduction. A set of genetic
changes is defined which are allowed to occur during
breeding between pairs. These changes typically con-
sist of modifications to a single gene (analogous to bi-
ological mutations) or exchange of one or more genes
between pairs (analogous to crossover events in cell
division). The result is a new population that can be
evaluated and the cycle is repeated. The genetic algo-
rithm has been applied to the development of hetero-
geneous catalysts, using the relative stoichiometries of
metal components as the “genes” [33, 34].

Monte Carlo is a stochastic optimization method
widely used for computer modeling of physical phe-
nomena. Monte Carlo methods are similar to genetic
algorithms in that experimental variables are perturbed
by a random process. However, fitness is evaluated us-
ing a thermodynamic analogy, in which an “energy”
function is compared to an effective “temperature”.
This procedure retains some samples that lower the
fitness function and, with proper tuning of parame-
ters, can escape local maxima in the response surface.
Monte Carlo methods have been applied to the design of
small molecule libraries and to simulated material dis-
covery experiments. Using a Random Phase Volume
Model to simulate a material with a highly nonlinear
response surface, Falcioni and Deem [35] compared
Monte Carlo variants to other search methods such as
grid-based and random searches. In these simulations,
Monte Carlo was shown to be much more effective at
maximizing the desired figure of merit (performance)
within a fixed number of experimental iterations. In an
earlier comparison of Monte Carlo to the genetic al-
gorithm for small molecule library design [36], it was
concluded that Monte Carlo methods lead to more di-
verse libraries, while the genetic algorithm may find the
best single candidate.
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Figure 5 Illustration of a recursive partitioning model. Here, A is an experimentally-measured performance parameter and the Dx are independent
variables (descriptors) used to partition data in the model.

4.4. Hierarchical and hybrid approaches
In hierarchical approaches, one method such as a di-
versity or statistical algorithm, may be employed to
design individual experiments, while a sequence of ex-
periments is treated as a search. One approach is to use
each round of experiments to build or refine a model of
relationships within the domain. The models can then
be used to predict outcomes for unmeasured samples
and/or conditions, which form the basis for designing
the next experiment. Hybrid strategies therefore employ
multiple methods in the experiment planning process.

A variety of algorithms may be applied to model
combinatorial materials data. To be suitable, methods
must be capable of handling the number of indepen-
dent variables to be considered and the types of non-
linear behavior mentioned above. Examples of methods
that meet these criteria are neural networks, ridge re-
gression and recursive partitioning [37]. Hastie et al.
[40] recently reviewed a variety of statistical learning
methods. Of these, neural networks and recursive parti-
tioning are beginning to be applied to high throughput
materials research.

4.4.1. Neural networks
Neural networks are nonlinear statistical models that
relate some number of input features to one or more
output responses. Neural networks can model either
quantitative outcomes (regression) or categorical out-
comes (classification). A number of methods fall under
the umbrella of neural network, but the most common
is the single hidden layer back-propagation network.
In the single hidden layer neural network, a set of in-
termediate features (the “hidden layer”) is created from
linear combinations of the inputs. The output(s) are then
modeled as functions of linear combinations of the in-
termediate features. The parameters of a neural network
model are trained using examples in which both inputs
and outputs are known. The network model can then
be applied to features of new examples to predict the
corresponding outputs.

4.4.2. Recursive partitioning
Recursive partitioning is used to develop decision tree
models of the relationships between a set of input fea-
tures (independent variables) and an output (depen-

dent) variable. Like neural networks, recursive parti-
tioning can be used to perform either regression or
classification, depending upon the output variable type.
Recursive partitioning iteratively partitions or splits the
experimental data into two or more subsets, based on
the value of the independent variable and values of the
independent variables that provide the best discrimi-
nation among the subsets. Splitting is continued until
some stopping criterion is met. The result is a tree model
of the data, illustrated schematically in Fig. 5. In the
model, each node corresponds to a split and the termi-
nal nodes (or leaves) correspond to the final partitioning
of the data. Tree models are developed through train-
ing on known examples, for instance from a previous
experiment. The model only incorporates independent
variables that have a significant effect on the dependent
variable. Once developed, the model can be applied
to unknown cases to predict the output variable. Tree
models may be combined by a variety of methods to
produce more reliable predictions. Advantages of re-
cursive partitioning over neural networks include the
ability to handle larger numbers of independent vari-
ables and more interpretable models.

4.4.3. Hybrid approach
An example of a hierarchical hybrid approach is de-
scribed in Bem et al. [26]. The method, termed optimal
coverage, distributes points within a region of interest
described by constraints supplied by the researcher. The
points are selected so as to maximize diversity in the
space of independent experimental variables. Regions
of interest for the next experiment are automatically de-
rived from the results of the previous experiment, using
either a greedy algorithm or by modeling the response
surface using multivariate nonlinear regression. The ap-
proach was shown to converge rapidly on the global
performance maximum, using a complex simulated re-
sponse surface with several local maxima.

5. Conclusions
Combinatorial experiment planning requires new ap-
proaches to experiment design. The selection of
method depends upon the mode of the experiment and
any underlying assumptions about the domain. The
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experiment design strategy must be compatible with the
intended method of experimental data analysis and
modeling to support the cycle of experiments illus-
trated in Fig. 1. Prior knowledge can be incorporated
into experiment planning in a variety of ways to re-
duce the problem space and to leverage experience. At
the same time, the dynamic tension between exploit-
ing that knowledge and seeking truly novel discov-
eries will remain a constant feature of combinatorial
experimentation.
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